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The fitting of data byy? minimization is valid only when the uncertainties in the data are normally
distributed. When analyzing spectroscopic or particle counting data at very low signaldeyeh
Thomson scattering diagnostiche uncertainties are distributed with a Poisson distribution. We
have developed a maximum-likelihood method for fitting data that correctly treats the Poisson
statistical character of the uncertainties. This method maximizes the total probability that the
observed data are drawn from the assumed fit function using the Poisson probability function to
determine the probability for each data point. The algorithm also returns uncertainty estimates for
the fit parameters. We compare this method with/aminimization routine applied to both
simulated and real Thomson scattering data. Differences in the returned fits are greater at low signal
level (less than~10 counts per measuremgnthe maximum-likelihood method is found to be
more accurate and robust, returning a narrower distribution of values for the fit parameters with
fewer outliers. ©1997 American Institute of PhysidsS0034-67487)73401-4

I. INTRODUCTION points, y4,...,yn, given a set of adjustable parameters,

When experimental data are fit to a function that is@1,--@w , IS a measure of the likelihood of the parameters

known to represent the phenomenon under investigation, the ven the data, and that maximizing the former also maxi-

standard strategy is to minimizé with respect to changes in mizes the _Iatte?.F.or counting .megsurements, th_e probability
the parameters of the “fit” function. Such a strategy relies onOf measuring a smgley.vaILge, 's given by the PO'SSOD. prob-
the assumption that the uncertainties in the data are normale'“ty fgnctlon,Pi — U exp(— u)/y! The total prob.abl.llt.y of
distributed. For non-normal uncertainty distributions such a easuring the\ values ofy; is the product of the individual
the Poisson distribution, minimizing? does not maximize probabilities,

the likelihood that the fitted parameters reflect the data. The N exp(—u)ui

maximum-likelihood method is described in the standard P=]] ————. @
texts?? Direct application of the method using Poisson dis- =1 yi

tributed uncertainties was made previously for a specifidf the measurement uncertainties were normally distributed
x-ray photon counting applicatichHowever, the general the product would be over the Gaussian probabilities with
treatment in the case of Poisson distributed uncertainties fatandard deviatiowr given by the measurement uncertain-
an arbitrary fit function[Eq. (2)] and its application to ties. Maximizing the product of Gaussian probabilities is
Thomson scattering data fromonrelativistig high tempera-  equivalent to minimizing the/ merit function; x> minimi-
ture plasmaEq. (4)] is new. Published work dealing with zation is therefore an application of the maximum-likelihood
Thomson scattering ddta have pointed out the need for method for the case of normally distributed uncertainties.
correctly evaluating the measurement uncertainty in the case The total Poisson probability is maximized by setting the
of low signal photon counting, but those uncertainties wereartial derivativegof the natural logarithmof Eq. (1) with
then used in least-squarésr x> minimization fitting rou- respect to the fit parameters to ze#hla;(In P)=0. The re-
tines, rather than the method described in this article. Ousult is a set ofM equations the roots of which yield the fit
motivation to develop this method arose from the need tgarameters that maximize the Poisson probability,
accurately and correctly fit Thomson scattering data with N

very low signal levelgas low as~10 detected photons per 9 inp)=3 Ju(x)
channel. da,; =1 dg

Yi
! U(Xi)) 0 @

We now apply this method for the fit function applicable
to Thomson scattering data reduction. For this diagnostic
method, monochromatic radiation is Thomson scattered off

In order to fit data, the function that represents the phethe electrons in a high-temperature plashighe scattered
nomenon being investigated must be known. Let the functiorspectrum of radiation has a Doppler spread determined by
be written asu(x,a;,...,ay), wherex is the independent the electron velocity distribution. Scattered light is collected
variable andh,,...,a) are adjustable parameters to be deteryin wavelength bands close to the wavelength of the incident
mined by the fit. For a given set of parameters, one caiight, and fit to the spectrum expected from a Maxwellian
calculate the probability of measuring the data pointf;). electron distribution. Relativistic effects can be neglected for
The maximum-likelihood fitting method is founded on the temperatures less thanl keV® and in that case the fit func-
assumption that the probability of measuring a set of datdion is a Gaussian with two parameters,

Il. DESCRIPTION OF THE MAXIMUM-LIKELIHOOD
METHOD
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u(x,)=a, ex;{ )Axi , ©) 100 ' @)
wherex is the wavelength shiftAN) and Ax is the channel
width (in wavelength units The Gaussian widthg,, is re-
lated to the electron temperature &%= 2\3T./mc? (for 90°
scattering. The electron density is proportional to the area
under the Gaussiam,a,>xn,. It is important to insert the
channel width(and any channel to channel calibration fac-
torg) into the fitting function[Eq. (3)] rather than modifying
the raw data. If the raw photon count data are modified, the 15 50 35 0
Poisson statistical character of the errors is distorted. simulated signal intensity (a,)

Applying the maximum-likelihood method to the fit
function in Eq.(3) yields the equations

% difference

FIG. 1. (The difference between the temperature determined by the
N N maximum-likelihood method ang?-minimization method for simulated

Ny ) — 2 N vy — data,(b) the difference between maximum-likelihood method and the input
izl (u(xi)—yi)=0, ;1 Xi (u(xi)—yi)=0. (4) value for temperaturé350 e\).

da\?

;i

’

We employ the Newton—Raphson method to find the roots of The true test of the maximume-likelihood method with
Eqg. (4). Since there are only two fit parameters, the JacobiafPoisson uncertainties comes at low signal intensities where
matrix is 22, can be immediately inverted. For more thanthe difference between the Poisson distribution and the nor-
two fit parameters, a numerical matrix inversion is requiredmal distribution is greatest. Figure 2 is a scatter plot of val-
An estimate of the uncertainty in the fit parameters isues for the electron temperature returned by the two codes
made by direct application of the error propagation equatiorplotted against each other for approximately 3000 fits to
for a set ofN independent measurements, simulated data. The amplitude parametewas held fixed at
N a value of 2.0 that simulates the low end of our experimen-
02:2 o2 (5) tally realized signal rangéabout 50 total counts in 5 chan-
= nely, and the electron temperature was fixed at 350 eV. All
_ . .. of the scatter is a result of the rand@Roisson fluctuations;
whereayi = \Jy; are the Poisson measurement uncertalntle%O additional noise sources are simulated. The scatter in the
for each data point. The derivative in EQ) is evaluated o heratyre values are not independent but tend to lie along
using a five-point numerical derivative. The fit parametersyq «|ine of agreement.” However, there is greater scatter
are determined for four “perturbed” values gfin addition e ically than horizontally, indicating that the distribution of
to the best-fit value in order to evaluate the derivative in Edreturned values for the maximum-likelihood code is nar-
(5). rower with fewer outliers than the distribution from the
x*-minimizing code.
The distribution of returned temperature values from the
gII.MTUELSA-I'—I!ES E)—K_II_EAFITTING ALGORITHM WITH Poisson code_ is _asymm_etric having a wing on the high-
temperature sidérig. 3) with a mean value 11% higher than
Simulated Thomson scattering data were generated fdhe simulated temperature. Thé code returns a mean tem-
five wavelength channels by drawing random deviates thagerature that is 17% higher than the simulated value with a
were Poisson distributed about a mean given by(Bg.The  similarly shaped distribution. At higher signal levels, the dis-
values of the fit parameters returned by the maximumiributions become symmetric and the means approach the
likelihood (Poisson code are compared with the simulation actual value(for both codes
input values and with the fits returned byy&minimizing

code. As expected, differences between the two codes, and 1000 Op—r—r—rrrrr—r—rrree
between the code and the simulation inputs are smaller at F < _input temp. *-i—#.

high signal intensitylarger simulation values fa;). Figure E [ L /

1(a) shows the differenc&%b) in the returned values for the E 1000 \ 3
electron temperature from the Poisson gyfdcodes. The R EON S
range of the difference is less than 5% at valuea,ajreater < [ SAE

than 20. The difference range between the fit parameters and < j00- @eﬁ“ 5 3
the actual valu€350 e\ is larger, about 20% at high signal = E 0\’0‘3 i+ ]
[Fig. 1(b)]. This reflects the rapid convergence of the Poisson e ; ]
pro.babilit.y d'istribution toward the normal probabilit'y distri- 10,5400 = 100016000
bution with increased mean values. The less rapid conver- T (eV) max.-likelihood

gence of the fits toward the simulation is understood, since
the uncertaintyi.e., random fluctuatiorin each data point is FIG. 2. Fit values for temperature from maximum-likelihood and

si_gni_fica_nt beyond the signal level where the two probability, minimization methods plotted against each otrsmulation input value
distributions converge. is 350 e\).
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N } : is more robust returning a narrower distribution of values for
4_ input temp. the electron temperature with fewer outliers. Since the parent
L 1 distribution is unknown in the experiment and there may be
significant discharge to discharge fluctuations in the param-
eters of the parent distribution, it is more difficult to assess
A the differences between the fitting routines with real data
than it is with simulated data, hence our reliance on simula-
tions for the critical tests of the fitting algorithms.

To estimate the values for the parent distribution at each
density, we summed the Thomson scattering data for all the
discharges and fit the accumulated spectrum. The fit param-
eters from the two fitting routines for this “ensemble” spec-
trum are in close agreement. Table | is a summary of the
comparison of the two fitting algorithms using real data.
djow 3 of Table | shows the temperature for the ensembled

pectra. For comparison with the simulation results of the
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FIG. 3. The distribution of values for the temperature returned by the
maximum-likelihood fitting routine is asymmetric.

The other parameter of interest in Thomson scatterin

data analysis is the area under the Gaussian spe¢anaa- . ! h |  the fi divided b
alaz\/ﬁ) which is proportional to electron density. For the previous section, the value of the fit paramete(divided by

same data set shown in Fig. 2, the distribution of returnedhe number of shots in the ensembléor the low density

values of area is symmetric, with mean values close to that Oqata setl_s 1.4seedF|g. 1 For th? mloderate a”‘?' hlghhden5|ty
the simulation. The maximum-likelihood fit value for the CaS€SA1=3.4 and 4.6, respectively. Row 4 gives the mean

area is larger than the simulated value by 1.5%, andythe (standard deviationof the approximately 30 temperature
value is 5% low. values returned by the maximume-likelihood method. Row 5

presents the meafstandard deviationfor fits returned by
the y° routine. The number of detected photofgsiantum
efficiency is about 4%in each channel are shown in rows 6
through 10. At these signal levels counting statistics domi-
Thomson scattering data was acquired in the Madisomate the measurement uncertainties for single shot spectra. At
Symmetric Torus(MST), a reversed field pinch plasmd. the lowest density, the maximum-likelihood fitting routine
Three plasma density valugs-30 spectra for each case returns a distribution of temperature values with mean closer
were obtained to get Thomson scattering signal variation ofo the ensemble value and with a smaller standard deviation
~3X. The plasma current was held fixed-aB40 KA. than the)? routine. At high density, the two codes return
The trends observed in the simulations are also seen itemperature values with very similar mean and standard de-
the fitting of real data. At low plasma densithience low viation. The trends agree with the simulation results and con-
Thomson scattering signathe maximum-likelihood method firm the conclusion that for low signal level the maximum-

IV. TESTING THE FITTING ALGORITHM WITH REAL
DATA

TABLE I. Summary of the comparison of the maximum-likelihood arféminimization methods using real Thomson scattering data from MST.

Density (10'° m~3) 0.5 1.3 1.8
# of discharges 31 27 41
Ensemble fit temp(eV) 379 289 210
Max.-likelihood fit mean(eV) 405 307 223
(std. dew) (164 (121 (78
X>-minimization fit mean(eV) 428 310 218
(std. dew) (205 (137 (76)
Avg. counts in channel #1 4.6 10.6 13.7
(backgroungl 1.9 (2.6) (2.9
Avg. counts in channel #2 12.0 27.7 33.2
(background (2.6 (4.6 (6.5
Avg. counts in channel #3 9.6 19.5 22.6
(background (1.4 3.2 (4.3
Avg. counts in channel #4 5.8 11.8 11.1
(backgroung 1.7 4.2 (6.5
Avg. counts in channel #5 55 104 13.2
(backgroungl (2.6 (5.3 (9.6
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likelihood fitting routine is more robust, returning fewer (though not rigorously correctto subtract the background
outliers, a narrower distribution of fit parameter values and aounts before implementing the fitting method as described
mean closer to the parent distribution value. At higher signaln Sec. Il. The relatively small background light level com-
level, the two routines return similar fit parameters and argared with the signal minimizes the distortion to the Poisson
equally robust. statistical character of the data. The numbers in Table | were
To rigorously include the background plasma light obtained by subtracting background counts before applying
present in the experiment, the fit functipigq. (3)] should be  the fitting routine. Background counts are sampled 125 ns

modified to include background counts as before and 125 ns after the laser pulse in each of the five
2 wavelength channels, so the background is accurately mea-
u(x)=a, eXp<—; Ax;+agf (X)) AX; (6)  sured if fluctuation power is dominated by frequencies below
2a5 ’ ~4 MHz.

where the shape of the background spectrég(y;), is de-
termined from the accumulated background counts oveACKNOWLEDGMENTS
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