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The fitting of data byx2 minimization is valid only when the uncertainties in the data are normally
distributed. When analyzing spectroscopic or particle counting data at very low signal level~e.g., a
Thomson scattering diagnostic!, the uncertainties are distributed with a Poisson distribution. We
have developed a maximum-likelihood method for fitting data that correctly treats the Poisson
statistical character of the uncertainties. This method maximizes the total probability that the
observed data are drawn from the assumed fit function using the Poisson probability function to
determine the probability for each data point. The algorithm also returns uncertainty estimates for
the fit parameters. We compare this method with ax2-minimization routine applied to both
simulated and real Thomson scattering data. Differences in the returned fits are greater at low signal
level ~less than;10 counts per measurement!. The maximum-likelihood method is found to be
more accurate and robust, returning a narrower distribution of values for the fit parameters with
fewer outliers. ©1997 American Institute of Physics.@S0034-6748~97!73401-4#
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I. INTRODUCTION

When experimental data are fit to a function that
known to represent the phenomenon under investigation
standard strategy is to minimizex2 with respect to changes i
the parameters of the ‘‘fit’’ function. Such a strategy relies
the assumption that the uncertainties in the data are norm
distributed. For non-normal uncertainty distributions such
the Poisson distribution, minimizingx2 does not maximize
the likelihood that the fitted parameters reflect the data.
maximum-likelihood method is described in the stand
texts.1,2 Direct application of the method using Poisson d
tributed uncertainties was made previously for a spec
x-ray photon counting application.3 However, the genera
treatment in the case of Poisson distributed uncertainties
an arbitrary fit function@Eq. ~2!# and its application to
Thomson scattering data from~nonrelativistic! high tempera-
ture plasma@Eq. ~4!# is new. Published work dealing with
Thomson scattering data4,5 have pointed out the need fo
correctly evaluating the measurement uncertainty in the c
of low signal photon counting, but those uncertainties w
then used in least-squares~or x2 minimization! fitting rou-
tines, rather than the method described in this article.
motivation to develop this method arose from the need
accurately and correctly fit Thomson scattering data w
very low signal levels~as low as;10 detected photons pe
channel!.

II. DESCRIPTION OF THE MAXIMUM-LIKELIHOOD
METHOD

In order to fit data, the function that represents the p
nomenon being investigated must be known. Let the func
be written asu(x,a1 ,...,aM), where x is the independen
variable anda1 ,...,aM are adjustable parameters to be det
mined by the fit. For a given set of parameters, one
calculate the probability of measuring the data points,yi(xi).
The maximum-likelihood fitting method is founded on th
assumption that the probability of measuring a set of d
914 Rev. Sci. Instrum. 68 (1), January 1997 0034-6748/97
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points, y1 ,...,yN , given a set of adjustable paramete
a1 ,...,aM , is a measure of the likelihood of the paramete
given the data, and that maximizing the former also ma
mizes the latter.2 For counting measurements, the probabil
of measuring a single valueyi is given by the Poisson prob
ability function,Pi 5 uyi exp(2 u)/yi! The total probability of
measuring theN values ofyi is the product of the individua
probabilities,

P5)
i51

N
exp~2u!uyi

yi !
. ~1!

If the measurement uncertainties were normally distribu
the product would be over the Gaussian probabilities w
standard deviations given by the measurement uncertai
ties. Maximizing the product of Gaussian probabilities
equivalent to minimizing thex2 merit function;x2 minimi-
zation is therefore an application of the maximum-likeliho
method for the case of normally distributed uncertainties

The total Poisson probability is maximized by setting t
partial derivatives~of the natural logarithm! of Eq. ~1! with
respect to the fit parameters to zero,]/]ai~ln P!50. The re-
sult is a set ofM equations the roots of which yield the fi
parameters that maximize the Poisson probability,

]

]aj
~ ln P!5(

i51

N
]u~xi !

]aj
S 12

yi
u~xi !

D50. ~2!

We now apply this method for the fit function applicab
to Thomson scattering data reduction. For this diagno
method, monochromatic radiation is Thomson scattered
the electrons in a high-temperature plasma.6 The scattered
spectrum of radiation has a Doppler spread determined
the electron velocity distribution. Scattered light is collect
in wavelength bands close to the wavelength of the incid
light, and fit to the spectrum expected from a Maxwelli
electron distribution. Relativistic effects can be neglected
temperatures less than;1 keV,6 and in that case the fit func
tion is a Gaussian with two parameters,
/68(1)/914/4/$10.00 © 1997 American Institute of Physics
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u~xi !5a1 expS 2xi
2

2a2
2 DDxi , ~3!

wherex is the wavelength shift~Dl! andDx is the channel
width ~in wavelength units!. The Gaussian width,a2, is re-
lated to the electron temperature bya2

252l0
2Te/mc2 ~for 90°

scattering!. The electron density is proportional to the ar
under the Gaussian,a1a2}ne . It is important to insert the
channel width~and any channel to channel calibration fa
tors! into the fitting function@Eq. ~3!# rather than modifying
the raw data. If the raw photon count data are modified,
Poisson statistical character of the errors is distorted.

Applying the maximum-likelihood method to the fi
function in Eq.~3! yields the equations

(
i51

N

~u~xi !2yi !50, (
i51

N

xi
2~u~xi !2yi !50. ~4!

We employ the Newton–Raphson method to find the root
Eq. ~4!. Since there are only two fit parameters, the Jacob
matrix is 232, can be immediately inverted. For more th
two fit parameters, a numerical matrix inversion is requir

An estimate of the uncertainty in the fit parameters
made by direct application of the error propagation equa
for a set ofN independent measurements,

sa
25(

i51

N

syi
2 S ]a

]yi
D 2, ~5!

wheresyi
5 Ayi are the Poisson measurement uncertain

for each data point. The derivative in Eq.~5! is evaluated
using a five-point numerical derivative. The fit paramet
are determined for four ‘‘perturbed’’ values ofy in addition
to the best-fit value in order to evaluate the derivative in E
~5!.

III. TESTING THE FITTING ALGORITHM WITH
SIMULATED DATA

Simulated Thomson scattering data were generated
five wavelength channels by drawing random deviates
were Poisson distributed about a mean given by Eq.~3!. The
values of the fit parameters returned by the maximu
likelihood ~Poisson! code are compared with the simulatio
input values and with the fits returned by ax2-minimizing
code. As expected, differences between the two codes,
between the code and the simulation inputs are smalle
high signal intensity~larger simulation values fora1!. Figure
1~a! shows the difference~%! in the returned values for th
electron temperature from the Poisson andx2 codes. The
range of the difference is less than 5% at values ofa1 greater
than 20. The difference range between the fit parameters
the actual value~350 eV! is larger, about 20% at high signa
@Fig. 1~b!#. This reflects the rapid convergence of the Poiss
probability distribution toward the normal probability distr
bution with increased mean values. The less rapid con
gence of the fits toward the simulation is understood, si
the uncertainty~i.e., random fluctuation! in each data point is
significant beyond the signal level where the two probabi
distributions converge.
Rev. Sci. Instrum., Vol. 68, No. 1, January 1997
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The true test of the maximum-likelihood method wi
Poisson uncertainties comes at low signal intensities wh
the difference between the Poisson distribution and the n
mal distribution is greatest. Figure 2 is a scatter plot of v
ues for the electron temperature returned by the two co
plotted against each other for approximately 3000 fits
simulated data. The amplitude parametera1 was held fixed at
a value of 2.0 that simulates the low end of our experim
tally realized signal range~about 50 total counts in 5 chan
nels!, and the electron temperature was fixed at 350 eV.
of the scatter is a result of the random~Poisson! fluctuations;
no additional noise sources are simulated. The scatter in
temperature values are not independent but tend to lie a
the ‘‘line of agreement.’’ However, there is greater scat
vertically than horizontally, indicating that the distribution o
returned values for the maximum-likelihood code is n
rower with fewer outliers than the distribution from th
x2-minimizing code.

The distribution of returned temperature values from
Poisson code is asymmetric having a wing on the hi
temperature side~Fig. 3! with a mean value 11% higher tha
the simulated temperature. Thex2 code returns a mean tem
perature that is 17% higher than the simulated value wit
similarly shaped distribution. At higher signal levels, the d
tributions become symmetric and the means approach
actual value~for both codes!.

FIG. 1. ~a!The difference between the temperature determined by
maximum-likelihood method andx2-minimization method for simulated
data,~b! the difference between maximum-likelihood method and the in
value for temperature~350 eV!.

FIG. 2. Fit values for temperature from maximum-likelihood an
x2-minimization methods plotted against each other~simulation input value
is 350 eV!.
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The other parameter of interest in Thomson scatter
data analysis is the area under the Gaussian spectrum~area5
a1a2A2p! which is proportional to electron density. For th
same data set shown in Fig. 2, the distribution of return
values of area is symmetric, with mean values close to tha
the simulation. The maximum-likelihood fit value for th
area is larger than the simulated value by 1.5%, and thex2

value is 5% low.

IV. TESTING THE FITTING ALGORITHM WITH REAL
DATA

Thomson scattering data was acquired in the Madi
Symmetric Torus~MST!, a reversed field pinch plasma.7,8

Three plasma density values~;30 spectra for each case!
were obtained to get Thomson scattering signal variation
;33. The plasma current was held fixed at;340 kA.

The trends observed in the simulations are also see
the fitting of real data. At low plasma density~hence low
Thomson scattering signal!, the maximum-likelihood method

FIG. 3. The distribution of values for the temperature returned by
maximum-likelihood fitting routine is asymmetric.
916 Rev. Sci. Instrum., Vol. 68, No. 1, January 1997

Downloaded¬07¬Jun¬2006¬to¬128.104.165.52.¬Redistribution¬subject
g

d
of

n

f

in

is more robust returning a narrower distribution of values
the electron temperature with fewer outliers. Since the pa
distribution is unknown in the experiment and there may
significant discharge to discharge fluctuations in the para
eters of the parent distribution, it is more difficult to asse
the differences between the fitting routines with real d
than it is with simulated data, hence our reliance on simu
tions for the critical tests of the fitting algorithms.

To estimate the values for the parent distribution at e
density, we summed the Thomson scattering data for all
discharges and fit the accumulated spectrum. The fit par
eters from the two fitting routines for this ‘‘ensemble’’ spe
trum are in close agreement. Table I is a summary of
comparison of the two fitting algorithms using real da
Row 3 of Table I shows the temperature for the ensemb
spectra. For comparison with the simulation results of
previous section, the value of the fit parametera1 ~divided by
the number of shots in the ensemble!, for the low density
data set is 1.4~see Fig. 1!. For the moderate and high densi
cases,a153.4 and 4.6, respectively. Row 4 gives the me
~standard deviation! of the approximately 30 temperatur
values returned by the maximum-likelihood method. Row
presents the mean~standard deviation! for fits returned by
the x2 routine. The number of detected photons~quantum
efficiency is about 4%! in each channel are shown in rows
through 10. At these signal levels counting statistics do
nate the measurement uncertainties for single shot spectr
the lowest density, the maximum-likelihood fitting routin
returns a distribution of temperature values with mean clo
to the ensemble value and with a smaller standard devia
than thex2 routine. At high density, the two codes retu
temperature values with very similar mean and standard
viation. The trends agree with the simulation results and c
firm the conclusion that for low signal level the maximum

e

TABLE I. Summary of the comparison of the maximum-likelihood andx2-minimization methods using real Thomson scattering data from MST.

Density ~1019 m23! 0.5 1.3 1.8

# of discharges 31 27 41
Ensemble fit temp.~eV! 379 289 210

Max.-likelihood fit mean~eV! 405 307 223
~std. dev.! ~164! ~121! ~78!

x2-minimization fit mean~eV! 428 310 218
~std. dev.! ~205! ~137! ~76!

Avg. counts in channel #1 4.6 10.6 13.7
~background! ~1.4! ~2.6! ~2.9!

Avg. counts in channel #2 12.0 27.7 33.2
~background! ~2.6! ~4.6! ~6.5!

Avg. counts in channel #3 9.6 19.5 22.6
~background! ~1.4! ~3.1! ~4.3!

Avg. counts in channel #4 5.8 11.8 11.1
~background! ~1.7! ~4.1! ~6.5!

Avg. counts in channel #5 5.5 10.4 13.2
~background! ~2.6! ~5.3! ~9.6!
Plasma diagnostics
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likelihood fitting routine is more robust, returning fewe
outliers, a narrower distribution of fit parameter values an
mean closer to the parent distribution value. At higher sig
level, the two routines return similar fit parameters and
equally robust.

To rigorously include the background plasma lig
present in the experiment, the fit function@Eq. ~3!# should be
modified to include background counts as

u~xi !5a1 expS 2xi
2

2a2
2 DDxi1a3f b~xi !Dxi , ~6!

where the shape of the background spectrum,f b(xi), is de-
termined from the accumulated background counts o
many similar discharges. The fit parametera3, is determined
by maximizing the Poisson probability given the bac
ground counts from a single shot. Using Eq.~2!, a3
5(yi

b/( f b(xi)Dxi , whereyi
b are the measured backgroun

counts in each channel~spectroscopic surveys indicate th
background light is dominated by impurity line radiatio
rather than continuum bremsstrahlung, and constitutes a
25–30% of the measured counts as shown in Table I, r
6–10!. This modification to the method described in secti
II was attempted using both simulated and real data. W
simulated data, the results were similar to the results
tained without including background light. Using real da
we found that the inclusion of background light in the ma
ner of Eq. ~6! produced less reliable fits. This presumab
results from shot to shot changes in the shape of the b
ground spectrum. Instead of implementing Eq.~6! to deal
with background light, it was found to be more satisfacto
Rev. Sci. Instrum., Vol. 68, No. 1, January 1997
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~though not rigorously correct! to subtract the backgroun
counts before implementing the fitting method as descri
in Sec. II. The relatively small background light level com
pared with the signal minimizes the distortion to the Poiss
statistical character of the data. The numbers in Table I w
obtained by subtracting background counts before apply
the fitting routine. Background counts are sampled 125
before and 125 ns after the laser pulse in each of the
wavelength channels, so the background is accurately m
sured if fluctuation power is dominated by frequencies bel
;4 MHz.
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